
Translator’s Afterword

Three Controversies about

Mathematics, Geometry, and Education

What we think of mathematics, and how we teach and learn it (or not),
determines to a large degree the place it takes in our culture. Regardless of
what we think, mathematics enters our life by providing us with idealized
models of real phenomena and showing us how to deal with them logically
and creatively. At the end of a traditional course in elementary geometry,
a subject seen for centuries as the essence of mathematics, it is tempting
to examine whether what we think of it is true. Here is a brief summary of
the three (most influential in my opinion) common views of mathematics,
and of geometry in particular:

∗ Mathematics is a relative wisdom; mathematical theorems, being log-
ical consequences of axioms, are representative of real world relationships
only to the degree that the axioms are.

∗ ∗ A key virtue of mathematics (as well as the notorious difficulty of it)
resides in the strict deductive nature of mathematical reasoning, as is best
demonstrated by elementary Euclidean geometry.

∗

∗

∗ To offset the difficulty and provide for success in education, early
exposure to elements of Euclidean geometry is highly recommended.

Usually such views are conveyed to the broad educated audience via the
high-school geometry course, but they sound self-explanatory and uncon-
troversial anyway, and are readily endorsed by those who are professionally
affiliated with mathematical education.

In these notes, we will see, drawing some examples from the main text
of this book, that these views are essentially misleading, as they are either
outdated or a result of terminological confusion and mis-information about
the history and essence of mathematics, and that the direction in education
suggested by them is rather perverted.

∗

It is true that classical elementary geometry was developed by postu-
lating basic properties of space in the form of axioms, and logically deriving
further properties from them. It is also true that modern mathematics often
relies on the axiomatic method. It turns out however that what is meant by
axioms has changed. Nowadays, axioms are used for unification purposes,
i.e. in order to study several similar examples at once. For instance (§140),
symmetricity and bilinearity are axioms defining an inner product, a notion
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that unifies the Euclidean (§140) and Minkowski (§145) dot products. An-
other example: the eight axioms of a vector space (§137) unify coordinate
vectors (§142) with geometric ones (§119).

Studying properties of several similar objects at once is a very common
method, and one sure way by which mathematics saves effort (using an
expression of Ron Aharoni [15]) and thus becomes useful. Axioms here are
simply part of a definition, i.e. a convention which calls an object by such-
and-such a name if it possesses the required properties; in mathematics they
are not “self-evident truths accepted without proof,” as the conventional
wisdom would have it. For instance, the definition of regular polyhedra
in §84 is axiomatic, as opposed to the constructive description of the five
Platonic solids given in §§85–86. The theorem of §87 illustrates the use of
the axiomatic method for purposes of classification (of regular polyhedra,
in this example). Similar applications are found in §142 (“uniqueness” of
Euclidean geometry) and §§149–151 (characterization of isometries).

It often happens that general results and concepts of mathematics, ini-
tially motivated by known examples, are successfully applied in unexpected
ways to new situations. The alternative scenario: an axiomatic theory de-
veloped with no examples known to satisfy the axioms, is rather unusual.
Thus mathematics appears today not as a “relative wisdom” (where con-
clusions hold if the axioms are satisfied) but as a science motivated by
studying important and interesting examples, for which the conclusions do
hold because the axioms are satisfied. Such examples often come as math-
ematical models of real phenomena. The most basic of these models deal
with comparing finite sets of objects, and the correct way of manipulat-
ing them is not decided by any system of axioms. It is learned (even by
advanced mathematicians) through the tedious process of counting — in
childhood.

Then what about classical Euclidean geometry? The way it was devel-
oped seems today quite similar to some advanced branches of theoretical
physics, notably string theory. Sometimes physics goes beyond of what is
known in mathematics and needs mathematical models that are not avail-
able. Then physicists use heuristic methods: they postulate the existence
of certain models with certain properties, and prescribe certain rules of
manipulating them, even though there is not a single example that fits the
description. This is similar to how non-Euclidean geometry first emerged
in the work of Lobachevsky and Bolyai (§134). Later, if physicists’ expec-
tations turn out to be reasonable, mathematicians construct the required
models, such as the hyperbolic (§146) and projective (§144) planes in the
case of non-Euclidean geometry. But until then, heuristic methods prevail
in describing physical reality.

This is how space is described in classical Euclidean geometry, both in
antiquity (see §133) and in modern age (Book I, §§1–5). One would examine
the images of a stretched thread, a light ray, or the surface of a pond or
desk, introduce infinitesimally thin and infinitely spread idealizations of
these objects, postulate those properties of lines and planes which appear
obvious from the heuristic point of view, and then obtain further properties
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by reasoning. The reader can check that this was the way the foundations
of geometry were treated by Euclid [1]. The physicists’ heuristic approach
to the foundations of elementary geometry worked well for mankind for over
two millennia. This approach should suffice even today for anyone studying
the subject for the first time.

∗ ∗

According to the author of a modern Russian textbook [9], “Geome-
try is a subject for those who like to dream, draw and examine pictures,
and who are good at making observations and drawing conclusions.” Ac-
cording to an expert at a homeschool math blog popular in the U.S., “high
school geometry with its formal (two-column) proofs is considered hard and
detached from practical life.” Sounds different? How come?

This time, it is geometry that means two different things. In various
countries, at different periods, the same new current in math education
emerged. The main idea was to bring high-school mathematics to a level
contemporary to the 20th century. In geometry, it meant introducing set-
theoretic terminology and emphasizing the role of geometric transforma-
tions. In Russia, Kolmogorov’s reform took place in late seventies, and was
immediately recognized as a failure (which seems to be the fate — for a
variety of causes — of all reforms in education). It did affect the quality of
instruction, but it shook only slightly the status of geometry as the most
inspiring part of the math curriculum. The analogous reform in the U.S.,
which took place in the sixties and was dubbed New Math, was accompa-
nied also with the intention of introducing mathematics “the correct way”
right from the start (as opposed to raising the level of abstraction in stages).
For geometry this meant: to erect it on a rigorous axiomatic foundation.

The search for a solid foundation for geometry has played an important
role in the development of mathematics (see §134). As was mentioned in the
previous section, this problem emerges not in a first study of the subject,
but later, when the building is already there and the question of what it
stands on remains. Modern mathematics solves this problem by introducing
geometry through vector algebra (as it is done in §§136–141). The vector
approach is considered “the royal road to geometry”: it is logically simple,
and intuitively transparent, since vectors come from physics. It also brings
into elementary geometry new problems and methods (see §§119–132), and
paves the road to more advanced mathematics, such as linear algebra.

The New Math reform attempted to bring rigor into a beginner’s course
of elementary geometry by following, albeit loosely, Hilbert’s axiomatic
approach (§135). Apparently, Hilbert’s monograph [2] was misconstrued as
a contemporary exposition of elementary geometry. In fact this work played
a key role in forming another branch of mathematics, mathematical logic,
but added little to classical geometry and nothing to modern. Moreover,
according to a leading French mathematician David Ruelle [12], “Hilbert’s
version of Euclidean geometry without the help of (1) [visual experience
and intuition] and (2) [drawings] shows how hard the subject really is.”

The focus of the post-New Math geometry courses falls, therefore, on
deductive reasoning, understood as the task of meticulous conversion of hy-
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potheses into conclusions. The format of two-column proofs is implemented
to streamline the process (see an example in §137): the left column is for
what is claimed, and the right for why. In the genre of two-column proofs,
it takes several lines to fully justify even an obvious statement (e.g. that if
one angle formed by two intersecting lines is right then the other three an-
gles they form are also right). Instead of shortcutting to deep and beautiful
geometric results, these textbooks either cast these results away or render
them in fine print, and dedicate whole chapters to formal proofs of trivial,
i.e. relatively obvious, facts.

In real mathematics, ancient or modern, there is no such thing as “two-
column” proofs (as opposed to “paragraph” ones), just as there is no divi-
sion of proofs into “formal” and “informal.” What, indeed, is a proof? In
science, we want to know not only what is true but also why it is so, and a
proof is an answer to the latter question. There is a subtlety though.

In mathematics, we systematically use the advantage of building new
knowledge upon previously established facts (and this is yet another way
that mathematics saves effort). It is not prohibited even in math to use
heuristic, plausible reasoning. For instance, one can form many composite
numbers by multiplying a few primes, and so it seems plausible that prime
numbers should occur sparsely among all whole numbers. While there ex-
ist mathematical theorems that make this intuition precise, the statement
taken too literally is expected to be false: according to the famous twin
prime conjecture, there are infinitely many pairs of primes that are only 2
units apart, like 29 and 31, or 41 and 43. Clearly, deriving logical conclu-
sions from observations that are only roughly correct and admit exceptions,
may lead to false results and contradictions. What is even worse, according
to the rules of logic, a proposition “A implies B” is true when A is false.
Hence, a single contradiction would rob one of the very means to obtain
reliable conclusions by logic: if some A were both true and false, then so
would every B! The method of building towers of new conclusions upon
previously established facts requires, therefore, that mathematical proposi-
tions be stated in a form that would allow no exceptions whatsoever. Thus,
the answer to the question of why such a proposition is true should also
explain why it allows no exceptions whatsoever. Whenever an argument is
neat enough to be convincing in this regard, it qualifies as a mathematical
proof.

Those who manage to evade the burden of two-column proofs and suc-
ceed in studying elementary geometry know firsthand that mathematics can
be valuable or difficult not due to the neat reasoning involved (which does
come in handy at times), but because mathematical gems reveal themselves
only when insight and ingenuity come into play.

∗

∗

∗

To repair the damage made by the increasingly formal style and shallow
content of high-school geometry courses, two remedies were invented.

The first one (apparently implemented in most U.S. high-schools) was
to abandon the whole subject of classical elementary geometry in favor
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of elements of analytical geometry and coordinate linear algebra. This
approach to geometry (see §§209–212 of Book I and §§142, 148 of Book II)
is well suited for developing routine exercises and algorithmic techniques.
A typical result for geometry instruction of this type is the ultimate loss of
the features, such as challenge and originality, that mark good science.

In the other approach, one intends to keep elementary geometry in
school (however formal and shallow, or even if only as an honors course) by
offering a preliminary, preparatory course of informal geometry (as opposed
to rigorous one). While in some cases this becomes simply the return to
a traditional geometry course (similar to Book I), more often this means:
rendering math by examples, and “without proof,” i.e. dogmatically. As
a variation, some popular textbooks of rigorous geometry realize the same
idea by exposing the reader to “formal proofs” only after introducing many
geometric facts in a series of chapters written “informally.” Both variations
fit a more general philosophy, according to which a high level of intellectual
maturity is required to succeed in studying classical Euclidean geometry,
and to reach this level, gradual exposure to geometric ideas is proposed.
Many modern math curricula adopt this philosophy and dedicate to ge-
ometry substantial portions of study time in middle and even elementary
school. As we noted earlier, these ideas sound quite reasonable, so it is
worth taking a look at where they lead.

It is important to realize that mathematics per se (as opposed to the
way it is taught) is not inherently evil, and so if it avoids using some simple
methods, there usually are reasons for this. For example, it is not hard
to measure the sum of the angles of a triangle and find that it is about
180◦. What is not possible to do by such measuring is to figure out why
all triangles have the same sum of the angles, for one thing, because there
are infinitely many triangles, and for another, because that is actually false
(see §144) for triangles on the surface of the globe. Approaching geometry
informally (i.e. neglecting logical relations) makes it hard to determine
what is true and why. In geometry education, this usually leads to the
dogmatic style, and (what is even worse) mathematical knowledge being
systematically replaced with tautology. To illustrate the latter point, we
discuss here three exercises taken from the chapter Geometric figures in a
popular pre-algebra textbook [13].

(1) Classify each given triangle by its (given) angles. To “classify”
means to decide if the triangle is acute, right or obtuse. One should realize
that triangles are not inherently divided into acute, right or obtuse, but it
is people who agreed to classify triangles this way. They did so in order
to express geometric knowledge, e.g. to answer the question: Does the
orthocenter of a given triangle lie inside or outside it? The answer is inside
for acute and outside for obtuse triangles. But the mere question about
classifying the triangles by angles is tautological, as an answer would contain
no geometric information beyond what is directly given.

(2) Find the measure of each angle of a regular pentagon, given that
the sum of the measures of the angles of a pentagon is 540◦. A totally
blind space alien who has no idea what polygons, angles or degrees are,
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will successfully answer this question if told that by the very definition a
regular pentagon has five angles of equal measure: 540◦ divided by 5 is
equal to 108◦. Not only does this exercise require no information beyond
a definition, but it does not even require any visual interpretation of the
definition. The same answer would involve non-tautological reasoning, if
the sum of the angles were not given.

(3) Find the perimeter of each polygon (with the lengths of the sides
labeled on a diagram). The perimeter, defined as the distance around a
figure, is a favorite geometry topic of many elementary school curricula.
In fact this definition is merely an English translation of the Greek word
perimeter. A kindergartener, asked to find the length of the fence around
a lot with five sides of 1, 2, 3, 4, and 10 yards long, will be able to answer:
1+2+3+4+10 = 20 yards. Thus the difficulty of the whole topic is purely
linguistic, namely in the use of a foreign word. To emphasize that solving
such exercises is void of any geometric content, I chose unrealistic num-
bers: the pentagon, whose perimeter of 20 yards has just been successfully
computed, cannot exist because of the triangle inequality (Book I, §49).

Of course, conventions such as definitions and notations are present in
every mathematical text, since they are needed for expressing mathematical
knowledge. Unfortunately, geometric portions of typical elementary school
curricula are dedicated entirely to conventions and tautologies. This is not
just a result of poor realization of good intentions, since it comes framed
as a certain ideology. Known as the van Hiele model, this ideology merits
a brief description.

According to the van Hiele model, the ability of a learner to process
geometric knowledge is determined by the level of geometric abstraction
achieved by this learner. At level 0, one is only able to identify geometric
shapes (e.g.: this is a rectangle). At level 1, one is able to attribute prop-
erties to shapes (e.g.: a rectangle has four right angles, and two diagonals
of the same length). At level 2, one becomes capable of deriving relation-
ships between the properties (e.g.: if the four angles of a quadrilateral are
right, then it must be a rectangle, and hence its diagonals have the same
length). At level 3, one is able to appreciate an entire logical theory that
tracks all properties of geometric shapes back to axioms. At level 4, one
can freely navigate through and compare abstract axiomatic theories (such
as non-Euclidean geometries) not relying on geometric intuition. The main
point of the model is that, regardless of age, a learner cannot progress to
the next level until he is firmly grounded in the previous one.

In the half century since its invention, this classification of five levels
has been the subject and the basis of many projects in education, and
is considered a well-established classical theory. It is quite remarkable,
therefore, that at a closer look the theory itself turns out to be almost
entirely a tautology. For comparison, imagine a “theory” claiming that
high-school students are divided into three categories: those who carry less
than $20 in their pockets, those who carry from $20 to $100, and those who
carry over $100. One can develop a field study on a school’s campus and
confirm that “the theory works!” In application to van Hiele’s levels, such
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a field study has been conducted, and the results reported in the book [14].
The fact that the classification into van Hiele’s levels, however smart and
elegant, is merely a definition, and so it cannot be confirmed or disproved
by any experiments, seems to escape, somehow, the researchers’ attention.

The part of the van Hiele model that can be true or false (and hence is
capable of carrying knowledge) consists of the claims that a learner of geom-
etry cannot reach the next level while bypassing the previous one. These are
four essentially independent claims (about reaching levels 1,2,3, and 4). In
fact the last two are true tautologically, simply because many is more than
one. Indeed, operating with axiomatic theories (level 4) includes operating
with one of them (level 3). Likewise, deriving all properties of geometric
figures from axioms (level 3) includes deriving some properties from oth-
ers (level 2). What remains are the assumptions that before attempting
a rigorous geometry course one has to go through two preliminary stages:
first becoming familiar with basic geometric shapes, and then learning to
discern their mathematical properties intuitively. These assumptions are
used to justify the ways geometry is presented throughout elementary and
middle school, and so they are important.

A beginner’s experience with geometric shapes should not be taken
lightly, since it is one of two primary places where mathematics meets the
real world (the other one being counting). All basic notions of geometry are
somehow abstracted from this experience. The trouble is that the experi-
ence is often confused with the skill of naming shapes correctly: “this is a
triangle, and this is a square.” Educational psychologists illustrate a typical
“difficulty” with this example: a beginner would not recognize a square as a
(special case of) rectangle, but would classify it as a distinct shape. In fact
the beginner is right: a square is a special case of rectangle not intrinsically,
but only by convention, while by another convention (see Book I, §96) a
parallelogram is not considered a special case of trapezoid. A convention is
not something one can figure out. In mathematics, giving names to objects
is the function of definitions, not theorems. Likewise, in real life, focusing
on how things are called is void of any knowledge about them, and is in
this sense meaningless. Here are some examples of meaningful questions.

1. Why are doors and windows rectangular and not triangular? (To
understand why, imagine how a triangular board with hinges would open.)
This question focuses on the properties of objects as determined by their
shapes, whatever the names might be.

2. Why are sewer hole covers often shaped as disks but rarely as squares?
The conventional answer to this question says that a square, turned side-
ways in space, can fall into the hole it covers, but a disk cannot. This may
bring up another question: Are disks the only shapes with this property?

3. How would a car move if the wheels were shaped as (regular) pen-
tagons, or hexagons? Well, it would not move very smoothly. The wheels
are mounted to the car’s axes by their centers, and what matters is that the
distance from the center to boundary points of the pentagon (or hexagon)
varies. This question leads directly to the definition of a circle as the locus
of points on the plane equidistant from the center.
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4. A traditional technique of relocating buildings consists in placing
round wood trunks of the same diameter under a (raised) house and rolling
it to a new place. Would the technique work well if the trunks had square
cross sections? In fact, what matters here is that a disk has the same width
in every direction, and the square does not. Are there figures of constant
width other than disks?

Generally speaking, it is not easy to invent geometry questions that
are meaningful yet elementary. What helps understanding (as opposed
to merely naming) geometric shapes is not classroom discussions but the
fact that shapes around us do matter. One learns what a right angle is
by fitting a bookshelf and a sofa bed next to each other, and encounters
parallelograms and trapezoids by drawing buildings according to the rules
of perspective.

Finally, let us return to the idea that an informal approach to ge-
ometry must precede the rigorous one. On the one hand, the statement
sounds self-defying. If one cannot begin with the rigorous approach, then,
since this is a relatively new pedagogical theory, how did people manage
to learn Euclidean geometry in the previous two millennia? On the other
hand, it seems obvious indeed, that Euclidean geometry is demanding of the
learner’s intellectual maturity, including the ability to concentrate, think,
reason, meet a challenge, read a book focusing on every detail, use concise
expression and precise terminology, etc.

The solution to this dilemma is very simple. The subject of Euclidean
geometry does not lend itself to purely intuitive, non-rigorous treatment.
It begins where Euclid began: from describing basic properties of abstract
points, lines, planes, and using imagination and logic in order to discover
and prove properties of geometric figures. To prepare oneself to study ge-
ometry, anything that requires imagination and logic, apart from geometry
itself, is suitable. Mathematics of the elementary school becomes one such
area, if studied not dogmatically but with full understanding of why it
works. Meaningful geometric content is very limited there, but in basic
arithmetic, one needs to go through many deep and subtle mathematical
ideas in order to fully appreciate the decimal number system, standard algo-
rithms, and operations with fractions (see [15]). To mention more: natural
sciences (e.g. the structure of electron shells in atoms, the periodic table
of chemical elements and genetics); computers and programming languages
(e.g. the robotic system LEGO Mindstorm); the grammar of natural lan-
guages; music and the theory of harmony; visual arts (e.g. origami); games
and puzzles (e.g. chess or the Rubik’s Cube). Anything real, which is
not a tautology but is rich with genuine, deep, non-trivial knowledge and
structure, prepares one for studying geometry and more advanced mathe-
matics. Everything fake: a substitute invented to facilitate instruction (be
it Informal Geometry or even Calculus), has the opposite effect.
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